Государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа №17 города Сызрани городского округа Сызрань Самарской области

РАССМОТРЕНА на заседании МО учителей математического цикла Протокол №1 «26» августа 2020 г

ПРОВЕРЕНА Зам. директора по УВР А.Н. Маргаленко УТВЕРЖДЕНА приказом №491/од от 31.08.2020 г. Директор ГБОУ СОШ №17 г. Сызрани Т.В. Фомина

РАБОЧАЯ ПРОГРАММА

по физике для обучения на дому

11 класс

Пояснительная записка

Рабочая программа по физике для для индивидуального обучения в 11 классе на углубленном уровне составлена в соответствии с требованиями Федерального государственного образовательного стандарта среднего общего образования (ФГОС СОО), примерной основной образовательной программы среднего общего образования, основной образовательной программы среднего общего образования ГБОУ СОШ №17 г. Сызрани, учебного плана ГБОУ СОШ №17 г. Сызрани.

Данная рабочая программа реализуется на основе УМК Г.Я. Мякишева, Б.Б. Буховцева и др.

На изучение учебного предмета «Физика» на углубленном уровне в 11 классе в учебном плане индивидуального обучения отводится 170 часов в год, из расчета 2 часа на очные занятия, 3 часа для самочтоятельного изучени.

1.Планируемые результаты освоения учебного предмета

1.1. Личностными результатами обучения физике в средней школе являются:

в сфере отношений обучающихся к себе, к своему здоровью, к познанию себя ориентация на достижение личного счастья, реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы; готовность и способность обеспечить себе и своим близким достойную жизнь в процессе самостоятельной, творческой и ответственной деятельности, к отстаиванию личного достоинства, собственного мнения, собственную позицию по отношению к общественно-политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны, к само- развитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества; принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;

в сфере отношений обучающихся к России как к Родине

(Отечеству) — российская идентичность, способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к историко-культурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству, его защите; уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение государственных символов (герб, флаг, гимн); формирование уважения к русскому языку как государственному языку

Российской Федерации, являющемуся основой российской идентичности и главным фактором национального самоопределения; воспитание уважения к культуре, языкам, традициям и обычаям народов, проживающих в Российской Федерации;

в сфере отношений обучающихся к закону, государству и к гражданскому обществу — гражданственность, гражданская позиция активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности, готового к участию в общественной жизни; признание неотчуждаемости основных прав и свобод

человека, которые принадлежат каждому от рождения, готовность к осуществлению собственных прав и свобод без нарушения прав и свобод других лиц, готовность отстаивать собтвенные права и свободы человека и гражданина согласно общепризнанным принципам и нормам международного права и в соответствии с Конституцией Российской Федерации, правовая и политическая грамотность; мировоззрение, соответствующее современному уровню развития науки и общественной практики, основанное на диалоге культур, а также различных форм об- щественного сознания, осознание своего места в поликультурном мире; интериоризация ценностей демократии и солидарности, готовность к договорному регулированию социальной отношений в группе или социальной организации; готовность обучающихся к конструктивному участию в принятии решений, затрагивающих права и интересы, в том числе в различных формах общественной самоорганизации, самоуправления, общественно значимой деятельности; приверженность идеям ин- тернационализма, дружбы, равенства, взаимопомощи народов; воспитание уважительного отношения к национальному достоинству людей, их чувствам, религиозным убеждениям; готовность обучающихся противостоять идеологии экстремизма, на- ционализма, ксенофобии, коррупции, дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям;

в сфере отношений обучающихся с окружающими людьми — нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения; при- нятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мне-

нию, мировоззрению; способность к сопереживанию и форми- рованию позитивного отношения к людям, в том числе к лицам с ограниченными здоровья и инвалидам; бе- режное, имктонжомков ответственное компетентное отношение к физическо- му и психологическому здоровью других людей, умение оказы- вать первую помощь; формирование выраженной в поведении нравственной позиции, в том числе способность к сознательно- му выбору добра, нравственного сознания и поведения на ос- нове усвоения общечеловеческих ценностей И нравственных чувств справедливость, милосердие и дружелю- бие); компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других ви- дах деятельности;

в сфере отношений обучающихся к окружающему миру, к живой природе, художественной культуре — мировоззре- ние, соответствующее современному уровню развития науки, значимость науки, готовность к научно-техническому творче- ству, владение достоверной информацией о передовых достиже- ниях и открытиях мировой и отечественной науки, заинтере- сованность в научных знаниях об устройстве мира и общества; готовность и способность к образованию, в том числе самообра- зованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной професси- ональной и общественной деятельности; экологическая культу- ра, бережное отношение к родной земле, природным богатствам России и мира, понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответ- ственность за состояние природных ресурсов, умений и на- выков разумного природопользования, нетерпимое

отношение к действиям, приносящим вред экологии; приобретение опыта эколого-направленной деятельности; эстетическое отношение к миру, готовность к эстетическому обустройству собственного быта;

в сфере отношений обучающихся к труду, в сфере соци- ально-экономических отношений — уважение всех форм соб- ственности, готовность к защите своей собственности; осознан- ный выбор будущей профессии как путь и способ реализации собственных жизненных планов; готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем; потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовест- ное, ответственное и творческое отношение к разным видам

трудовой деятельности, готовность к самообслуживанию, вклю- чая обучение и выполнение домашних обязанностей.

1.2. Метапредметные результаты обучения физике в средней школе представлены тремя группами универсальных учебных действий.

Регулятивные универсальные учебные действия

Выпускник научится:

самостоятельно определять цели, ставить и формулиро- вать собственные задачи в образовательной деятельности и жизненных ситуациях;

оценивать ресурсы, в том числе время и другие нематери- альные ресурсы, необходимые для достижения поставленной ранее цели;

сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;

организовывать эффективный поиск ресурсов, необходи-

мых для достижения поставленной цели;

определять несколько путей достижения поставленной цели;

выбирать оптимальный путь достижения цели с учетом эф- фективности расходования ресурсов и основываясь на сообра- жениях этики и морали;

задавать параметры и критерии, по которым можно опре- делить, что цель достигнута;

сопоставлять полученный результат деятельности с по- ставленной заранее целью;

оценивать последствия достижения поставленной цели в учебной деятельности, собственной жизни и жизни окружаю- щих людей.

Познавательные универсальные учебные действия

Выпускник научится:

критически оценивать и интерпретировать информацию с разных позиций;

распознавать и фиксировать противоречия в информаци- онных источниках;

использовать различные модельно-схематические средства для представления выявленных в информационных источни- ках противоречий;

осуществлять развернутый информационный поиск и ста- вить на его основе новые (учебные и познавательные) задачи;

искать и находить обобщенные способы решения задач;

приводить критические аргументы как в отношении соб- ственного суждения, так и в отношении действий и суждений другого;

анализировать и преобразовывать проблемно-противоре- чивые ситуации;

выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия; выстраивать индивидуальную образовательную траекто- рию, учитывая ограничения со стороны других участников и ресурсные ограничения;

менять и удерживать разные позиции в познавательной де- ятельности (быть учеником и учителем; формулировать образо- вательный запрос и выполнять консультативные функции са- мостоятельно; ставить проблему и работать над ее решением; управлять совместной познавательной деятельностью и подчи- няться).

Коммуникативные универсальные учебные действия

Выпускник научится:

осуществлять деловую коммуникацию как со сверстника- ми, так и со взрослыми (как внутри образовательной организа- ции, так и за ее пределами);

при осуществлении групповой работы быть как руководи- телем, так и членом проектной команды в разных ролях (гене- ратором идей, критиком, исполнителем, презентующим и т. д.);

развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;

распознавать конфликтогенные ситуации и предотвращать

конфликты до их активной фазы;

координировать и выполнять работу в условиях виртуаль- ного взаимодействия (или сочетания реального и виртуально- го);

согласовывать позиции членов команды в процессе работы над общим продуктом/решением;

представлять публично результаты индивидуальной и групповой деятельности, как перед знакомой, так и перед не- знакомой аудиторией;

подбирать партнеров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не лич- ных симпатий;

воспринимать критические замечания как ресурс соб- ственного развития;

точно и емко формулировать как критические, так и одо-

брительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

1.3.Предметные результаты обучения физике в средней школе

Выпускник на углубленном уровне научится:

объяснять и анализировать роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;

характеризовать взаимосвязь между физикой и другими естественными науками;

характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;

понимать и объяснять целостность физической теории,

различать границы ее применимости и место в ряду других физических теорий;

владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоре- тических выводов и доказательств;

самостоятельно конструировать экспериментальные установки для проверки выдвинутых гипотез, рассчитывать абсолютную и относительную погрешности;

самостоятельно планировать и проводить физические эксперименты;

решать практико-ориентированные качественные и расчетные физические задачи как с опорой на известные физические законы, закономерности и модели, так и с опорой на тексты с избыточной информацией;

объяснять границы применения изученных физических

моделей при решении физических и межпредметных задач;

выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;

характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические и роль физики в решении этих проблем;

объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;

объяснять условия применения физических моделей при решении физических задач, находить адекватную предложен- ной задаче физическую модель, разрешать проблему как на ос- нове имеющихся знаний, так и при помощи методов оценки.

Применительно к темам курса ученик сможет:

знать: предмет и методы исследования физики. Структуру физических теорий, метод научного познания, особенности изучения физики;

объяснять явления: поступательное движение; движение окружности с постоянной по модулю скоростью; движение тела, брошенного под углом к горизонту; свободное падение тел; относительность движения; взаимодействие; всемирного тяготения, упругости, невесомости и перегрузки; вращательное движение; равновесия твердого тела; деформации твердых тел, давление в жидкостях и газах, полет тел; колебательное движение, свободные, затухающие и вынужденные коебания, автоколебания, превращение резонанс, энергии при гармонических колебаниях; волновой процесс, излучение звука, интерференция и дифракция волн, отражение и преломление волн, акустический резонанс, образование стоячей волны, музыкальные звуки и шумы; броуновское движение, взаимодействие молекул; тепловое равновесие, необратимость процессов в природе; испарение, конденсация, равновесие между жидкостью и газом, критическое состояние, кипение, сжижение газов, влажность воздуха; поверхностное натяжение, смачивание, капиллярные явления; плавление и отвердевание, изменение объ- ема тела при плавлении и отвердевании, дефекты в кристаллах; тепловое линейное и объемное расширение, расширение воды; электризация тел, взаимодействие неподвижных электрических зарядов внутри однородного диэлектрика, электростатическая защита, поляризация диэлектрика; сопротивление, сверхпроводимость; электронная проводимость металлов, электрический ток в растворах и расплавах электролитов, электрический ток в газах, электрический ток в вакууме, электрический ток в полупроводниках; возникновение магнитного поля, магнитные взаимодействия, действие магнитного поля на проводник с то- ком, действие магнитного поля на движущийся заряд; электромагнитная индукция, самоиндукция; парамагнетизм, диамагнетизм, ферромагнетизм; свободные и вынужденные электрические колебания, процессы в колебательном контуре, резистор в цепи переменного тока, катушка индуктивности в цепи переменного тока, емкость в цепи переменного тока, резонанс в электрической генерирование электрической энергии, выпрямление переменного тока, соединение потребителей электрической энергии, передача и распределение электрической энергии; возникновение электромагнитного поля, передача электромагнитных взаимодействий, поглощение, отражение, преломление, электромагнитных распространение интерференция волн, радиолокация, образование видеосигнала; прямолинейное распространение света, отражение и преломление света, полное отражение света, рефракция света, мираж, аберрация; интерференция, дифракция, дисперсия и поляризация света; излучение света (тепловое излучение, электролюминесценция, катодолюминесценция, хемилюминесценция, фотолюминесценция); одновременности, относительность относительность расстояний, относительность промежутков времени; равновесное тепловое излучение, фотоэффект, эффект Комптона, давление света, химическое действие света, запись и воспроизведение звука; излучение света атомом, корпускулярно-волновой дуализм; естественная и искусственная радиоактивность; слабое взаимодействие, взаимодействие кварков; возникновение приливов на Земле, солнечные и лунные затмения, явление метеора, существование хвостов комет, «разбегание» галактик;

знать определения физических понятий: средняя скорость, мгновенная среднее ускорение, мгновенное ускорение, радиус-вектор, тангенциальное, нормальное и полное ускорения, центростремительное ускорение, угловая скорость; материальная точка, модель в физике, инерциальная си- стема отсчета, сила, масса, состояние системы тел; сила инертная и гравитационная тяготения, массы, космическая скорость, сила упругости, вес тела, силы неинерциальная система отсчета, силы инерции; импульс, работа силы, мощность, кинетическая энергия, потенциальная энергия, механическая консервативные и диссипативные силы, замкнутая энергия, (изолированная) система; абсолютно твердое тело, центр масс, момент инерции, момент силы, момент импульса, угловое ускорение, внешние и внутренние силы; момент силы, центр тяжести; механическое напряжение, удлинения; гармонические относительное И абсолютное пружинный и математический маятники, период, частота, циклическая (круговая) частота, амплитуда, фаза гармонических колебаний, скорость и ускорение при гармонических колебаниях, спектр колебаний, собственная частота; поперечные и продольные волны, плоская и сферическая волны, энергия вол- ны, длина волны, скорость распространения волны, скорость звука, громкость и высота звука, тембр, волновая поверхность, луч, волновой фронт, инфразвук, ультразвук, когерентные волны, интерференционная картина; количество вещества, молярная масса; макроскопические микроскопические тела, температура, равновесные и неравновесные процессы, идеальный газ, изотермический, изобарный и изохорный процессы, абсолютная температура; температура, средняя скорость движения молекул газа, средняя квадратичная скорость, средняя арифметиеская скорость, число степеней свободы, внутренняя энергия идеального газа; работа термодинамике, количество теплоты, теплоемкость, удельная теплоемкость, теплоемкости газов при постоянном молярная теплоемкость, объеме и постоянном давлении, необратимый процесс, адиабатный процесс, вероятность

макроскопического состояния (термодинамическая вероятность), КПД двигателя, цикл Карно; насыщенный и ненасыщенный пар, изотермы реального газа, критическая температура, абсолютная и относительная влажность воздуха, точка росы, удельная теплота парообразования/конденсации, парциальное давление водяного пара; поверхностная энергия, сила поверхностного натяжения, мениск, давление

под искривленной поверхностью жидкости, высота поднятия жидкости в капилляре; кристаллические и аморфные тела, кристаллическая решетка, жидкие кристаллы, удельная теплота плавления, полиморфизм, анизотропия, фазовые переходы первого и второго рода, тройная точка; температурные коэффициенты линейного и объемного расширения; электрическое поле, электростатическое поле, напряженность электрического поля, напряженно- сти электрического поля, однородное поле, поверхностная плотность электрического заряда, объемная плотность электрического заряда, поток напряженности электрического поля, потенциальная энергия заряда в однородном электрическом поле, энергия взаимодействия точечных зарядов, потенциал электро- статического поля, эквипотенциальные поверхности, электри- ческая емкость, емкость плоского конденсатора, энергия электрического поля; электрический ток, плотность тока, сила тока, напряжение сопротивление проводника, работа тока, мощность электродвижущая (ЭДС), шунт амперметру, сила К добавочное сопротивление; проводники, диэлектрики, носители электрического заряда, электролитическая диссоциация, самостоятельный и несамостоятельный разряды, электронная эмиссия, вольт-амперная характеристика, диод, триод, электронно-лучевая трубка, донорные и акцепторные примеси, p—n-переход; магнитная индукция, поток магнитной индукции, линии магнитной индукции, сила Ампера, сила Лоренца, векторное произведение, радиационные пояса Земли, масс-спектрограф, вихревое электрическое поле, ЭДС индукции в движущихся проводниках, индукционный ток, индуктивность, энергия магнитная проницаемость, намагниченность, магнитного поля, электрона, домены, магнитный гистерезис, переменный электрический ток, действующие значения силы тока и напряжения, мощность переменного тока, коэффициент мощности, обратная связь в генераторе на транзисторе, генератор переменного тока, трансформатор, коэффициент действия трансформатора, трехфазный ток, полезного асинхронный электродвигатель; ток смещения, электромагнитная волна, вибратор Герца, электромагнитных скорость распространения волн, энергия электромагнитной волны, плотность по- тока электромагнитного излучения, детектирование, амплитудная модуляция, поток излучения, относительная спектральная световая эффективность, сила света, точечный источник, освещенность, яркость; плоское зеркало, сферическое зеркало, фокус, мнимый фокус, фокальная плоскость, оптическая сила сферического зеркала, увеличение ось, побочная оптическая ось, показатель зеркала, главная оптическая преломления, предельный угол полного отражения, световод, тонкая линза, фооптическая кусное расстояние И сила линзы; скорость света, MOинтерференционная нохроматическая волна, И дифракционная зоны Френеля, векторные диаграммы, разрешающая когерентные волны, способность оптических приборов; спектр излучения, интенсивность спектральные электромагнитного излучения, приборы, непрерывные линейчатые спектры, спектральный и рентгеноструктурный анализ, ультрафиолетовое и инфракрасное излучения, рентгеновские лучи; собственное время, релятивистский импульс, масса покоя, энергия покоя, релятивистская кинетическая энергия, абсолютно черное тело; квант, фотон, энергия и импульс фотона, модель Томсона, планетарная модель атома, модель атома водорода по Бору, энергия ионизации, волны вероятности, лазер, индуцированное излучение, нелинейная оптика; альфа-, бета- и гамма излучение, период полураспада, изотопы, нейтрон, протон, ядерные силы, сильное взаимодействие, диаграммы Фейнмана, виртуальные частицы, мезоны, нуклоны, энергия связи атомных ядер,

удельная энергия связи, энергетический выход ядерных реакций, ядерный реактор, критическая масса, термоядерные реакции, доза излучения; античастица, позитрон, нейтрино, промежуточные бозоны, лептоны, адроны, барионы, мезоны, кварки, глюоны; геоцентрическая и гелиоцентрическая система мира, астрономическая единица, световой год, светимость звезд, планеты Солнечной системы, галактика;

понимать смысл основных физических законов/принципов/уравнений: кинематические уравнения движения в век- торной и скалярной формах для различных видов движения, преобразования Галилея; основное утверждение механики, за- коны Ньютона, принцип относительности в механике, закон закон Гука, второй тяготения, закон неинерциальной системы отсчета; закон сохранения импульса, уравнение Мещерского, закон сохранения механической энергии, теорема об изменении кинетической энергии, уравнение изменения механической энергии под действием сил трения, теорема о движении центра масс, основное уравнение динами- ки вращательного движения твердого тела, закон сохранения момента импульса, условия равновесия твердого тела; законы Гука, Паскаля и Архимеда, уравнение Бернулли; зависимость

колебаний от частоты и периода свободных свойств системы, уравнения движения для груза, подвещенного пружине, на математического маятника, уравнения затухающих движения ДЛЯ вынужденных колебаний, метод векторных диаграмм, закон сохранения энергии для гармонических колебаний; уравнение бегущей волны, принцип максимума минимума интерференции, условия И преломления волн; основ- ные положения молекулярно-кинетической теории, газовые за- коны, уравнение состояния идеального газа; основное уравнение молекулярно-кинетической теории, распределение Максвелла; термодинамики, теорема Карно, принципы действия тепловой и холодильной зависимость темпе- ратуры кипения жидкости от давления, диаграмма равновес- ных состояний жидкости и газа, зависимость удельной теплоты парообразования от температуры; зависимость высоты поднятия жидкости в капилляре от поверхностного натяжения, радиуса канала капилляра и плотности жидкости, влияние кривизны поверхности на давление внутри жидкости; зависимость температуры плавления от давления, зависимость типа кристалла от характера взаимодействия атомов и молекул, кристалл; взаимосвязь между температурными циентами линейного и объемного расширения; закон Кулона, принцип суперпозиции полей, теорема Гаусса, применение тео- ремы Гаусса к расчету различных электростатических полей, связь между напряженностью электростатического поля и разностью потенциалов, зависимость емкости системы конденсаторов от типа их соединения; закон Ома для участка цепи, дифференциальной форме, зависимость электрического сопротивления от температуры, закон Джоуля—Ленца, закономерности последовательного и параллельного соединений про- водников, закон Ома для полной цепи, закон Ома для участка цепи, содержащего ЭДС, правила Кирхгофа, границы примени- мости закона Ома, закон электролиза; принцип суперпозиции, закон Био—Савара—Лапласа (в векторной и скалярной формах), закон Ампера (в векторной и скалярной формах), формула для расчета силы Лоренца (в векторной и скалярной формах), правила определения направления сил Ампера и Лоренца, связь между скоростью света и магнитной и электрической постоянными, теорема о циркуляции вектора магнитной индукции; правило Ленца, закон электромагнитной индукции, фундаментальное свойство электромагнитного поля (Дж. Максвелл); зависимость намагниченности ферромагнетика от величины магнитной индукции поля в отсутствие среды (кривая намагничивания); формула Томсона, закон Ома для цепи переменного тока, мощность в цепи переменного тока; связь между переменным электрическим и переменным магнитным полями, классическая теория излучения, принципы радиосвязи; закон освещенности, принцип Ферма, законы геометрической оптики, формула сферического зеркала и линзы, принципы построения изображений в сферическом зеркале и линзе, правило знаков при использовании формулы тонкой линзы; принцип Гюйгенса—Френеля, условия минимума и максимума интерференционной и дифракционной картин, электромагнитная теория света; механизм излучения света веществом; постулаты теории относительности, преобразования Лоренца, релятивистский за- кон сложения скоростей, зависимость массы от скорости, релятивистское уравнение движения, принцип соответствия, формула Эйнштейна, релятивистское соотношение между энергией и импульсом; гипотеза Планка, теория фотоэффекта; спектральные закономерности, постулаты Бора, гипотеза де Бройля, соотношение неопределенностей Гейзенберга, принцип Пауи, Периодическая система химических элементов Д. И. Менделеева, принцип действия лазеров; закон радиоактивного распада, правило смещения; гипотеза Паули, сущность распада элементарных частиц, единая теория слабых и электромагнитных взаимодействий; гипотезы происхождения и развития Солнечной системы, закон Хаббла;

измерять: мгновенную скорость и ускорение при равно- мерном прямолинейном движении, центростремительное ускорение при равномерном движении по окружности; массу, силу, силу всемирного тяготения, силу упругости, силу трения, вес тела; центробежную силу;

использовать полученные знания в повседневной жизни, например, учет относительности движения, инерции, трения при движении по различным поверхностям, невесомости и перегрузок при движении в неинерциальных системах отсчета (лифт, самолет, поезд), оценивание работы различных сил (при подъеме, скольжении или качении грузов), сравнение мощности различных двигателей, учет законов вращательного движения при обучении фигурному катанию, гимнастической подготовке, обучении прыжкам в воду с высокого трамплина; при поиске устойчивого положения в различных обстоятельствах; при обучении плаванию различными техниками; учет различных свойств газообразных, жидких и твердых тел, свойств га- зов; учет явления резонанса, понимание функционирования сердца человека как автоколебательной системы; уметь отличать музыкальные звуки от шума; при оперировании понятием

«внутренняя энергия» в повседневной жизни; учет необратимости процессов в природе при проведении различных экспериментов; учет влажности организации собственной жизнедятельности; уметь пользоваться приборами для измерения влажности; учет капиллярных явлений в быту; при замораживании продуктов, при покупке мониторов, изготовленных на технологии жидких кристаллов; учет расширения тел при на- гревании, особенностей воды при замораживании; учет в быту явления электризации соблюдении правил техники безопасности при работе с электрическими приборами, понимание принципа работы аккумулятора; использование знаний полупроводниковой физики при выборе различной цифровой техники; понимание информации об изменении магнитного поля Земли и его влиянии на самочувствие человека, использование знаний при работе с электроизмерительными приборами; пони- мать причину потерь энергии в электротехнических устройствах; учет явления намагничивания и

размагничивания при работе с цифровыми носителями информации; понимание об- ратной связи; эффективное использование электроэнергии в быту, понимание включенности каждого потребителя электро- энергии в города/региона/страны; энергосистему понимать функционирования мобильной (сотовой) связи, понимать тенденции развития телевидения (переход «на цифру»); коррекция зрения с помощью подбора очков, линз, выбор фото- аппарата, опираясь на знание его оптических характеристик; оценивать пределы разрешающей способности различных оптических приборов; знать положительное и отрицательное влияние ультрафиолетового излучения человеческий организм; на относительности при оценке расстояний, скорости; пони- мание принципов «энергетический фотографии; оценивать выход≫ излучения, используемого в медицинских целях; знать способы защиты от радиоактивных излучений; критически оценивать астрономическую информацию в различных источниках.

Выпускник на углубленном уровне получит возможность научиться:

проверять экспериментальными средствами выдвинутые гипотезы, формулируя цель исследования, на основе знания основополагающих физических закономерностей и зако- нов:

описывать и анализировать полученную в результате проведенных физических экспериментов информацию, определять ее достоверность;

понимать и объяснять системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;

решать экспериментальные, качественные и количественные задачи олимпиадного уровня сложности, используя

физические законы, а также уравнения, связывающие физич ские величины;

анализировать границы применимости физических зак нов, понимать всеобщий характер фундаментальных зако- нов и ограниченность использования частных законов;

формулировать и решать новые задачи, возникающие в ходе учебно-исследовательской и проектной деятельности;

усовершенствовать приборы и методы исследования в соответствии с поставленной задачей;

использовать методы математического моделирования, в том числе простейшие статистические методы для обр аботки результатов эксперимента.

Обеспечить достижение планируемых результатов освоения основной образовательной программы, создать основу для самостоятельного успешного усвоения обучающимися новых знаний, умений, видов и способов деятельности должен системнодеятельностный подход. В соответствии с этим подходом именно активность обучающихся признается основой достижения развивающих целей образования — знания не передаются в готовом виде, а добываются учащимися в процессе познавательной деятельности.

- В результате учебно-исследовательской и проектной деяельности выпускник получит представление:
- о философских и методологических основаниях научной деятельности и научных методах, применяемых в исследовательской и проектной деятельности;
 - о таких понятиях, как «концепция», «научная гипотеза»,
 - «метод», «эксперимент», «надежность гипотезы», «модель»,
 - «метод сбора» и «метод анализа данных»;
- о том, чем отличаются исследования в гуманитарных областях от исследований в естественных науках;

об истории науки;

о новейших разработках в области науки и технологий;

- о правилах и законах, регулирующих отношения в научной, изобретательской и исследовательских областях деятельности (патентное право, защита авторского права и т. п.);
- о деятельности организаций, сообществ и структур, заин- тересованных в результатах исследований и предоставляющих ресурсы для проведения исследований и реализации проектов (фонды, государственные структуры, краудфандинговые структуры и т. п.).

Выпускник сможет:

решать задачи, находящиеся на стыке нескольких учебных дисциплин (межпредметные задачи);

использовать основной алгоритм исследования при решении своих учебнопознавательных задач;

использовать основные принципы проектной деятельности при решении своих учебно-познавательных задач и задач, воз- никающих в культурной и социальной жизни;

использовать элементы математического моделирования при решении исследовательских задач;

использовать элементы математического анализа для ин-ерпретации результатов, полученных в ходе учебно-исследовательской работы.

С точки зрения формирования универсальных учебных действий, в ходе освоения принципов учебно-исследовательской и проектной деятельностей выпускник научится:

формулировать научную гипотезу, ставить цель в рамках исследования и проектирования, исходя из культурной нормы и сообразуясь с представлениями об общем благе;

восстанавливать контексты и пути развития того или иного вида научной деятельности, определяя место своего исследования или проекта в общем культурном пространстве;

отслеживать и принимать во внимание тренды и тенденции развития различных видов деятельности, в том числе научных, учитывать их при постановке собственных целей;

оценивать ресурсы, в том числе и нематериальные, такие, как время, необходимые для достижения поставленной цели;

находить различные источники материальных и нематериальных ресурсов, предоставляющих средства для проведения исследований и реализации проектов в различных областях деятельности человека;

вступать в коммуникацию с держателями различных типов ресурсов, точно и объективно презентуя свой проект или возможные результаты исследования, с целью обеспечения продуктивного взаимовыгодного сотрудничества;

самостоятельно и совместно с другими авторами разрабатывать систему параметров и критериев оценки эффективности и продуктивности реализации проекта или исследования на каждом этапе реализации и по завершении работы;

адекватно оценивать риски реализации проекта и проведения исследования и предусматривать пути минимизации этих рисков;

адекватно оценивать последствия реализации своего проекта (изменения, которые он повлечет в жизни других людей, сообществ);

адекватно оценивать дальнейшее развитие своего проекта или исследования, видеть возможные варианты применения результатов.

2. Содержание курса учебного предмета «Физика» Механика

Предмет и задачи классической механики. Кинематические характеристики движения. Модели тел и движений. Движение точки и тела. Прямолинейное движение точки. Ко- ординаты. Система отсчета. Средняя скорость при неравномерном движении. Мгновенная скорость. Описание движения на плоскости. Ускорение. Скорость при движении с постоянным ускорением. Зависимость координат и радиуса-вектора от времени при движении с постоянным ускорением. Свободное падение. Движение тела, брошенного под углом к горизонту. Рав- номерное движение точки по окружности. Угловая скорость. Относительность движения. Преобразования Галилея.

Основное утверждение механики. Взаимодействие тел. Принцип суперпозиции сил. Первый закон Ньютона. Инерциальные системы отсчета. Сила. Связь между силой и ускорением. Второй закон Ньютона. Масса. Третий закон Ньютона. Основные задачи механики. Состояние системы тел в механике. Принцип относительности в механике.

Сила всемирного тяготения. Закон всемирного тяготения. Равенство инертной и гравитационной масс. Движение небесных тел и их искусственных спутников. Первая космическая скорость. Деформация и сила упругости. Закон Гука. Вес тела. Невесомость и перегрузки. Сила трения. Природа и виды сил трения. Сила сопротивления при движении тел в вязкой среде.

Неинерциальные системы отсчета, движущиеся прямолинейно с постоянным ускорением. Вращающиеся системы отсчета. Центробежная сила.

Импульс материальной точки и системы тел. Закон изменения и сохранения импульса. Реактивная сила. Уравнение Мещерского. Реактивный двигатель. Успехи в освоении космического пространства. Работа силы. Мощность. Кинетическая энергия. Потенциальная энергия. Механическая энергия материальной точки и системы. Закон изменения и сохранения энергии в механике. Столкновение упругих шаров. Уменьшение механической энергии под действием сил трения.

Абсолютно твердое тело и виды его движения. Центр масс твердого тела. Теорема о движении центра масс. Основное уравнение динамики вращательного движения твердого тела. Закон сохранения момента импульса.

Условия равновесия твердого тела. Момент силы. Центр тяжести. Виды равновесия.

Виды деформаций твердых тел. Механические свойства твердых тел. Пластичность и хрупкость. Давление в жидкостях и газах. Закон Паскаля. Закон Архимеда. Гидродинамика. Ламинарное и турбулентное течения. Уравнение Бернулли. Подъемная сила крыла самолета.

Классификация колебаний. Уравнение движения груза, подвешенного на пружине. Уравнение движения математического маятника. Гармонические колебания. Период и частота гармонических колебаний. Фаза колебаний. Определение амплитуды и начальной фазы из начальных условий. Скорость и ускорение при гармонических колебаниях. Превращения энергии. Затухающие колебания. Вынужденные колебания. Резонанс. Сложение гармонических колебаний. Спектр колебаний. Автоколебания.

Волновые явления. Поперечные волны. Длина волны. Скорость распространения волны. Продольные волны. Уравнение бегущей волны. Стоячие волны как свободные колебания тел. Волны в среде. Звуковые волны. Скорость звука. Музыкальные звуки и шумы.

Громкость и высота звука. Тембр. Диапазоны звуковых частот. Акустический резонанс. Излучение звука. Ультразвук и инфразвук. Интерференция волн. Принцип Гюйгенса. Закон отражения волн. Преломление волн. Дифракция волн.

Молекулярная физика и термодинамика

Физика и механика. Тепловые явления. Краткий очерк развития представлений о природе тепловых явлений. Термодинамика и молекулярнокинетическая теория.

Основные положения молекулярно-кинетической теории (МКТ). Экспериментальные доказательства МКТ. Масса молекул. Моль. Постоянная Авогадро. Броуновское движение. Силы взаимодействия молекул. Строение газообразных, жидких и твердых тел.

Состояние макроскопических тел в термодинамике. Температура. (обратимые) равновесие. Равновесные равновесные И не-(необратимые) процессы. Газовые законы. Модель идеального газа. Абсолютная температура. Уравнение состояния идеального газа. Газовый термометр. Применение газов в технике.

Системы с большим числом частиц и законы механики. Идеальный газ в молекулярно-кинетической теории. Основное уравнение молекулярно-кинетической теории. Температура — мера средней кинетической энергии. Распределение Максвелла. Измерение скоростей молекул газа. Внутренняя энергия идеального газа.

Равновесие между жидкостью и газом. Насыщенные пары. Изотермы реального газа. Критическая температура. Критическое состояние. Кипение. Сжижение газов. Влажность воздуха.

Молекулярная картина поверхностного слоя. Поверхностная энергия. Сила поверхностного натяжения. Смачивание. Капиллярные явления.

Кристаллические тела. Кристаллическая решетка. Аморфные тела. Жидкие кристаллы. Дефекты в кристаллах. Объяснение механических свойств твердых тел на основе молекулярно-кинетической теории. Плавление и отвердевание. Изменение объема тела при плавлении и отвердевании. Тройная точка.

Тепловое расширение тел. Тепловое линейное расширение. Тепловое объемное расширение. Учет и использование теплового расширения тел в технике.

Работа в термодинамике. Количество теплоты. Внутренняя энергия. Первый закон термодинамики. Теплоемкости газов при постоянном объеме и постоянном давлении. Адиабатный процесс. Необратимость процессов в природе. Второй закон термодинамики. Статистическое истолкование необратимости процессов в природе. Тепловые двигатели. Максимальный КПД тепловых двигателей.

Электродинамика

Роль электромагнитных сил в природе и технике. Электрический заряд и элементарные частицы. Электризация тел. Закон Кулона. Взаимодействие неподвижных электрических зарядов внутри однородного диэлектрика.

Близкодействие и действие на расстоянии. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей. Линии напряженности электрического поля. Теорема Гаусса. Поле заряженной плоскости, сферы и шара. Проводники в электростатическом поле. Диэлектрики в электро- статическом поле. Поляризация диэлектриков.

Потенциальность электростатического поля. Потенциальная энергия заряда в однородном электрическом поле. Потенциал электростатического поля и разность потенциалов. Связь между напряженностью электростатического поля и разностью потенциалов. Эквипотенциальные поверхности. Измерение

разности потенциалов. Экспериментальное определение элементарного электрического заряда.

Электрическая емкость. Конденсаторы. Емкость плоского конденсатора. Различные типы конденсаторов. Соединения конденсаторов. Энергия заряженных конденсаторов и проводников. Применения конденсаторов.

Электрический ток. Плотность тока. Сила тока. Электрическое поле проводника с током. Закон Ома для участка цепи. Со- противление проводника. Зависимость электрического сопротивления ОТ температуры. Работа Джоуля—Ленца. Сверхпроводимость. мошность тока. Закон Электрические Последовательное цепи. И параллельное проводников. Измерение силы тока, напряжения и сопротивления.

Электродвижущая сила. Гальванические элементы. Аккумуляторы. Закон Ома для полной цепи. Закон Ома для участка цепи, содержащего ЭДС. Работа и мощность тока на участке цепи, содержащем ЭДС. Расчет сложных электрических цепей.

Электрическая проводимость различных Электронная веществ. Электрический ток в растворах проводимость металлов. расплавах электролиза. Техническое применение электролитов. Закон электролиза. Электрический ток в газах. Несамостоятельный и самостоятельный разряды. Различные типы самостоятельного разряда и их техническое применение. Плазма. Электрический ток в вакууме. Электронные лампы: диод и триод. Электронно-лучевая трубка. Электронные пучки. Электрический ток в полупроводниках. Собственная примесная элекропроводимость Электронно-дырочный полупроводников. переход (p-n-переход). Полупроводниковый диод. Транзистор. Термисторы и фоторезисторы.

Магнитные взаимодействия. Магнитное поле токов. Вектор магнитной индукции. Поток магнитной индукции. Линии магнитной индукции. Закон Био—Савара—Лапласа. Закон Ампера. Применения закона Ампера. Электроизмерительные приборы. Действие магнитного поля на движущийся заряд. Сила Лоренца. Применение силы Лоренца. Циклический ускоритель.

Открытие электромагнитной индукции. Правило Ленца. Закон электромагнитной индукции. Вихревое электрическое поле. ЭДС индукции в движущихся проводниках. Индукционные токи в массивных проводниках. Самоиндукция. Индуктивность. Энергия магнитного поля тока.

Магнитная проницаемость — характеристика магнитных свойств веществ. Три класса магнитных веществ. Объяснение пара- и диамагнетизма. Основные свойства ферромагнетиков. О природе ферромагнетизма. Применение ферромагнетиков.

Свободные и вынужденные электрические колебания. Процессы в колебательном контуре. Формула Томсона. Переменный электрический ток. Действующие значения силы тока и напряжения. Резистор в цепи переменного тока. Конденсатор в цепи переменного тока. Катушка индуктивности в цепи переменного тока. Закон Ома для цепи переменного тока. Мощность в цепи переменного тока. Резонанс в электрической цепи. Лам- повый генератор. Генератор на транзисторе.

Генерирование электрической энергии. Генератор переменного тока. Трансформатор. Выпрямление переменного тока. Трехфазный ток. Соединение обмоток генератора трехфазного тока. Соединение потребителей электрической энергии. Асинхронный электродвигатель. Трехфазный трансформатор. Производство и использование электрической энергии. Передача и распределение электрической энергии. Эффективное использование электрической энергии.

Электромагнитное поле. Электромагнитная волна. Излучение электромагнитных волн. Энергия электромагнитной волны. Свойства электромагнитных волн. Принципы радиосвязи. Амплитудная модуляция. Детектирование колебаний. Простейший радиоприемник. Распространение радиоволн. Радиолокация. Понятие о телевидении. Развитие средств связи.

Геометрическая оптика. Световые лучи. Закон прямолинейного распространения света. Фотометрия. Сила света. Освещенность. Яркость. Фотометры.

Принцип Ферма и законы геометрической оптики. Отражение света. Плоское зеркало. Сферическое зеркало. Построение изображений в сферическом зеркале. Увеличение зеркала.

Преломление света. Полное отражение. Преломление света в плоскопараллельной пластинке и треугольной призме. Преломление на сферической поверхности. Линза. Фокусное расстояние и оптическая сила линзы. Формула линзы. Построение изображений в тонкой линзе. Увеличение линзы. Освещенность изображения, даваемого линзой. Недостатки линз. Фотоаппарат. Проекционный аппарат. Глаз. Очки. Лупа. Микроскоп. Зрительные трубы. Телескопы.

Волновые свойства света. Скорость света. Дисперсия Интерференция света. Длина световой волны. Интерференция в тонких Некоторые применения Кольца Ньютона. интерференции. Дифракция света. Теория дифракции. Дифракция Френеля на простых объектах. Дифракция Фраунгофера. Дифракционная решетка. Разрешающая микроскопа и телескопа. Поперечность световых Поляризация света. Поперечность световых волн и электромагнитная теория света.

Виды излучений. Источники света. Спектры и спектральные приборы. Виды спектров. Спектральный анализ. Инфракрасное и ультрафиолетовое излучения. Рентгеновские лучи. Шкала электромагнитных излучений.

Основы специальной теории относительности

Законы электродинамики и принцип относительности. Опыт Майкельсона. теории относительности. Относительность одновременности. Относительность Преобразования Лоренца. Относительность расстояний. промежутков времени. Релятивистский закон сложения скоростей. Релятивистская динамика. Зависимость массы от скорости. Синхрофазотрон. Связь между массой и энергией.

Квантовая физика.

Физика атома и атомного ядра

Предмет и задачи квантовой физики. Зарождение квантовой теории.

Тепловое излучение. Распределение энергии в спектре абсолютно черного тела.

Гипотеза Планка о квантах. Фотоэффект. Теория фотоэффекта. Фотоны. Применение фотоэффекта.

Опыты П. Н. Лебедева и С. И. Вавилова. Давление света. Химическое действие света. Фотография. Запись и воспроизведение звука в кино.

Спектральные закономерности. Строение атома. Модель Томсона. Опыты Резерфорда. Планетарная модель атома. Постулаты Бора. Модель атома водорода по Бору. Экспериментальное доказательство существования стационарных состояний. Трудности теории Бора. Квантовая механика. Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Дифракция электронов. Соотношение неопределенностей Гейзенберга. Волны вероятности. Интерференция вероятностей. Многоэлектронные атомы.

Квантовые источники света — лазеры.

Атомное ядро и элементарные частицы. Методы наблюдения

регистрации элементарных частиц. Открытие естественной гамма-излучение. радиоактивности. Альфа-, бета- и Радиоактивные превращения. Закон радиоактивного распада. Период полураспада. Изотопы. Правило смещения. Искусственное пре- вращение атомных ядер. Открытие нейтрона. Строение атомно- го ядра. Ядерные силы. Энергия связи атомных ядер. Искусственная радиоактивность. Ядерные реакции. Деление ядер урана. Цепные ядерные реакции. Ядерный реактор. Термоядерные реакции. Применение ядерной энергии. Получение радиоактивных изотопов и их применение. Биологическое действие радиоактивных излучений.

Три этапа в развитии физики элементарных частиц. Открытие позитрона. Античастицы. Распад нейтрона. Открытие нейтрино. Промежуточные бозоны — переносчики слабых взаимодействий. Сколько существует элементарных частиц. Кварки. Взаимодействие кварков. Глюоны.

Строение Вселенной

Применимость законов физики для объяснения природы космических объектов. Солнечная система как комплекс тел, имеющих общее происхождение. Общие характеристики планет. Планеты земной группы. Далекие планеты. Солнце и звезды. Классификация звезд. Эволюция Солнца и звезд.

Строение и эволюция Вселенной. Темная материя и темная энергия.

Единая физическая картина мира. Физика и научно-техническая революция.

Лабораторный практикум

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

11 класс

Nº	Название раздела, темы	Количество часов на очные занятия	Количество часов для самостоятельного обучения
1	Электрический ток в различных средах	5	5
2	Магнитное поле тока	5	5
3	Электромагнитная индукция	4	4
4	Магнитные свойства вещества	2	2
5	Лабораторный практикум	4	4
7	Механические колебания	3	6
8	Электрические колебания	3	6
9	Производство, передача, распределение	2	3
	и использование электрической энергии		
10	Механические волны. Звук	2	3
11	Электромагнитные волны	2	6
12	Лабораторный практикум	6	6
14	Развитие взглядов на природу света. Геометрическая оптика	3	8
15	Световые волны	2	3
16	Излучение и спектры	2	3
17	ОСНОВЫ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ	1	3

19	Световые кванты. Действия света	4	4
20	Атомная физика. Квантовая теория	3	6
21	Физика атомного ядра	4	4
22	Элементарные частицы	3	5
23	Лабораторный практикум по оптике и квантовой	3	5
	физике		
24	СТРОЕНИЕ ВСЕЛЕННОЙ	3	5
25	ЗНАЧЕНИЕФИЗИКИ ДЛЯ ОБЪЯСНЕНИЯ МИРАИ		2
	РАЗВИТИЯПРОИЗВОДИТЕЛЬНЫХ СИЛ		
	ОБЩЕСТВА		
26	Повторение	2	8
	Итого	68	102