Министерство образования Самарской области государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа №17 города Сызрани городского округа Сызрань Самарской области.

Принята на заседании педагогического совета ГБОУ СОШ № 17 г. Сызрани Протокол № 17 от «29» июля 2024 г.

ТБОУ СОШ № 17-г. Сызрани А.Ш. Буланкина Приказ № \$28/од от «29» июля 2024 г.

Дополнительная общеобразовательная общеразвивающая программа «Академия Робототехнических Искусств»

Направленность: техническая

Возраст: 7-18 лет.

Срок реализации: 1 год.

Разработчик: Шуйский А.А., педагог дополнительного образования

ОГЛАВЛЕНИЕ

Пояснительная записка.	3
Учебно-тематический план	6
Содержание	7
Методическое обеспечение	13
Список литературы	14
Календарно-тематический план	16

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

За последние годы успехи в робототехнике и автоматизированных системах изменили личную и деловую сферы нашей жизни. Сегодня промышленные, обслуживающие и домашние роботы широко используются на благо экономики ведущих мировых держав: выполняют работы более дёшево, с большей точностью и надёжностью, чем люди, используются на вредных для здоровья и опасных для жизни производствах. Роботы широко используются в транспорте, в исследованиях Земли и космоса, в хирургии, в военной промышленности, при проведении лабораторных исследований, в сфере безопасности, в массовом производстве промышленных товаров и товаров народного потребления. Роботы играют всё более важную роль в жизни, служа людям и выполняя каждодневные задачи. Интенсивная экспансия искусственных помощников в нашу повседневную жизнь требует, чтобы пользователи обладали современными знаниями в области управления роботами, что позволит быстро развивать новые, умные, безопасные и более продвинутые автоматизированные и роботизированные системы.

Дополнительная общеразвивающая образовательная программа дополнительного образования детей «Академия Робототехнических Искусств» имеет **техническую направленность**.

Новизна данной дополнительной образовательной программы заключается в том, что по форме организации образовательного процесса она является модульной.

Работа по программе заключается в использовании Лего-конструкторов, что повышает мотивацию учащихся к обучению, при этом требуются знания практически из всех учебных дисциплин от искусств и истории до математики и естественных наук. Межпредметные занятия опираются на естественный интерес к разработке и постройке различных механизмов. Одновременно занятия ЛЕГО как нельзя лучше подходят для изучения основ алгоритмизации и программирования.

Работа с образовательными конструкторами LEGO позволяет школьникам в форме познавательной игры узнать многие важные идеи и развить необходимые в дальнейшей жизни навыки. При построении модели затрагивается множество проблем из разных областей знания — от теории механики до психологии, — что является вполне естественным.

Очень важным представляется тренировка работы в коллективе и развитие самостоятельного технического творчества.

Изучая простые механизмы, ребята учатся работать руками (развитие мелких и точных движений), развивают элементарное конструкторское мышление, фантазию, изучают принципы работы многих механизмов.

Преподавание курса предполагает использование компьютеров и специальных интерфейсных блоков совместно с конструкторами. Важно отметить, что компьютер используется как средство управления моделью; его использование направлено на составление управляющих алгоритмов для собранных моделей. Учащиеся получают представление об особенностях составления программ управления, автоматизации механизмов, моделировании работы систем.

Актуальность образовательной робототехники заключается в возможности объединить конструирование и программирование в одном курсе, что способствует интегрированию преподавания информатики, математики, физики, черчения, естественных наук с развитием инженерного мышления, через техническое творчество. Техническое творчество — мощный инструмент синтеза знаний, закладывающий прочные основы системного мышления. Таким образом, инженерное творчество и лабораторные исследования — многогранная деятельность, которая должна стать составной частью повседневной жизни каждого обучающегося.

Педагогическая целесообразность программы заключается в том что, она является целостной и непрерывной в течение всего процесса обучения, и позволяет обучающимся шаг за шагом раскрывать в себе творческие возможности и само реализоваться в с современном мире. В процессе конструирования и программирования дети получат дополнительное образование в области физики, механики, электроники и информатики.

Цель – обучение основам робототехники, программирования, развитие творческих способностей в процессе конструирования и проектирования.

Задачи:

Обучающие:

- Ознакомить с основными принципами механики;
- Дать первоначальные знания по устройству робототехнических устройств;
- Научить основным приемам сборки и программирования робототехнических средств;
- сформировать общенаучные и технологические навыки конструирования и проектирования;
- ознакомить с правилами безопасной работы с инструментами, необходимыми при конструировании робототехнических средств;

Воспитывающие:

- воспитывать нравственные качества личности: настойчивость в достижении цели, ответственность, дисциплинированность, трудолюбие;
- воспитывать коммуникативные качества;
- формировать творческое отношение к выполняемой работе;
- воспитывать умение работать в коллективе.
- воспитать уважение к истории и традициям технической сферы развития Самарской области.

Развивающие:

- развивать образное, техническое мышление;
- развивать умение работать в команде по предложенным инструкциям;
- развивать творческую инициативу и умение самостоятельно находить верное решение;
- развивать психофизиологические качества учеников: память, внимание, способность логически мыслить, анализировать, концентрировать внимание на главном;
- развивать интерес к учебным предметам посредством конструктора.

Основные отличительные особенности данной программы является то, что она предназначена как для обучающихся младшего школьного возраста, так и для подростков.

Группы формируются из расчета 2-15 человек. Система набора в группы осуществляется по собственному желанию ребенка.

Программа предназначена для обучающихся 7-18 лет.

Сроки реализации программы:

Программа рассчитана на 1 год обучения: 108 часов в год,

Формы и режим занятий: бесед, наблюдений, соревнований, лабораторных занятий, экспериментов, защиты проектов и т.д. Занятия групп проводятся 2 раза в неделю по 2 и 1 часу, т.е. 3 часа в неделю (108 часов в год).

Прогнозируемые результаты образовательной деятельности.

По окончанию обучения обучающиеся должны знать:

- правила безопасной работы;
- основные компоненты конструкторов ЛЕГО;
- компьютерную среду, включающую в себя графический язык программирования;
- виды подвижных и неподвижных соединений в конструкторе;
- основные приемы конструирования роботов;
- конструктивные особенности различных роботов;
- как передавать программы в EV3;

- порядок создания алгоритма программы, действия робототехнических средств;
- как использовать созданные программы;
- самостоятельно решать технические задачи в процессе конструирования роботов (планирование предстоящих действий, самоконтроль, применять полученные знания, приемы и опыт конструирования с использованием специальных элементов, и других объектов и т.д.);
- создавать реально действующие модели роботов при помощи специальных элементов по разработанной схеме, по собственному замыслу;
- создавать программы на компьютере для различных роботов;
- корректировать программы при необходимости;

Должны уметь:

- принимать или намечать учебную задачу, ее конечную цель.
- проводить сборку робототехнических средств, с применением LEGO конструкторов;
- создавать программы для робототехнических средств.
- прогнозировать результаты работы.
- планировать ход выполнения задания.
- рационально выполнять задание.
- руководить работой группы или коллектива.
- высказываться устно в виде сообщения или доклада.
- высказываться устно в виде рецензии ответа товарища.
- представлять одну и ту же информацию различными способами

Методикой проверки **результативности** творческого объединения является аттестация обучающихся. Предварительная аттестация осуществляется в сентябре с целью оценки исходного (начального) уровня знаний обучающихся перед началом образовательного процесса по программе. Итоговая аттестация осуществляется в мае с целью оценки качества освоения обучающимися содержания образовательной программы в конце учебного года. Аттестация осуществляется в форме:

- теста определяется теоретическая подготовка ребенка;
- наблюдения выявляется практическая подготовка ребенка, оцениваются общеучебные умения и навыки ребенка.

При заполнении бланков по результатам аттестации для определения теоретической подготовки обучающихся используются следующие формы оценки:

- от 1 до 2,5 баллов низкий уровень знаний, трудности в понимании заданий, и учебного материала; Правильных ответов нет или ответы правильны менее чем на 9 вопросов теста.
- 2,6-3,9 средний уровень. Правильные ответы даны на 10-15 вопросов теста.
- 4 5 высокий уровень знаний, качественное выполнение заданий. Правильные ответы даны на 16 и более вопросов теста.

Практическая подготовка ребенка оценивается по следующим критериям:

- от 1 до 2,5 баллов низкий уровень умений, несформированность навыков, трудности в понимании заданий. Обучающиеся не овладели умениями определенными в программных требованиях. Творчество и мастерство на элементарном уровне.
- 2,6-3,9 средний уровень. Обучающихся частично овладели умениями определенными в программных требованиях. Творчество и мастерство на репродуктивном уровне.
- 4 5 высокий уровень умений и навыков, качественное выполнение заданий. Обучающиеся полностью овладели умениями определенными в программных требованиях. Творчество и мастерство на высоком творческом уровне, обучающийся выполняет практические задания с элементами творчества самостоятельно.

- Общеучебные умения и навыки оцениваются по критериям:
- от 1 до 2,5 баллов низкий уровень умений, несформированность навыков, трудности в понимании заданий. Обучающиеся не овладели умениями определенными в листе аттестации.
- 2,6-3,9 средний уровень. Обучающихся частично овладели умениями определенными в листе аттестации.
- 4 5 высокий уровень умений и навыков, качественное выполнение заданий. Правильные ответы даны на 16 и более вопросов теста. Обучающиеся полностью овладели умениями определенными в листе аттестации.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

No	Наименование модуля/раздела	Кол-	Теория	Практика
		ВО		
		часов		
1	Модуль «Основы. Введение в мир роботов. Изучение продукта LEGO EV3»	48	19	29
2	Модуль «Изучение схем и технологических карт. Программирование.»	36	9	27
3	Модуль «Проектная деятельность. Моя область - Самарская»	24	3	21
	Итого	108	31	77

СОДЕРЖАНИЕ

Модуль 1. «Основы. Введение в мир роботов. Изучение продукта LEGO EV3.»

В данном модуле обучающимся предлагается познакомиться с основной деятельностью в рамках образовательной программы, интерактивным конструктором, средой программирования.

Обучающиеся знакомятся с конструктором LEGO MINDSTORMS EV3, управлением моторами конструктора, изменением мощности моторов. Учатся использовать датчик касания, датчик цвета/света, ультразвуковым элементом «Education Ultrasonic Sensor», создавать программы для управления датчиками, сохранять программы на компьютере и загружать в микропроцессор. Обучающиеся знакомятся с зубчатыми передачами и их видами, разновидностями зубчатых колес.

Цель модуля: знакомство со средой конструирования, названиями и назначением деталей конструктора.

Задачи модуля:

- изучить названия и назначение деталей конструктора и их соединений, электронные компоненты конструктора их подключение и правила работы, понятие команды, программы;
- закрепить знания интерфейса программы, понятия ожидание действия, понятие цикла;
 - сформировать навыки создания простых программ для робота;
 - освоить приемы использования мотора в технике;
 - научиться использовать датчик касания, датчик цвета/света, ультразвуковым элементом «Education Ultrasonic Sensor», создавать программы для управления датчиками, сохранять программы на компьютере и загружать в микропроцессор.

Тематическое планирование модуля «Основы. Введение в мир роботов. Изучение продукта LEGO EV3.»

	роботов. изучение продукта LEGO E v 5.»						
No	Наименование тем	Кол-	Теория	Практика	Формы		
		ВО			аттестации/		
		часов			контроля		
1	Модуль «Основы. Введение в мир роботов. Изучение продукта LEGO EV3»	48	19	29			
1.1	Вводное занятие. Техника безопасности. Роботы вокруг нас.	1	1	-	Наблюдение, беседа		
1.2	Среда конструирования - знакомство с деталями конструктора. Названия и назначение базовых деталей.	2	1	1	Наблюдение, беседа		
1.3	Изучение соединительных деталей конструктора.	1	1	-	Наблюдение, беседа		
1.4	Конструкция. Основные свойства конструкции при ее построении.	2	1	1	Наблюдение, беседа		
1.5	Условные обозначения деталей конструктора. Выбор наиболее рационального способа описания.	1	1	-	Наблюдение, беседа		
1.6	Тестирование учащихся по разделу 1.	2	-	2	Тестирование, практическая работа		
1.7	Техника безопасности при работе с моторами и микропроцессором.	1	1	-	Наблюдение, беседа		

1.8	Микропроцессор и правила работы с ним.	1	-	1	Наблюдение, беседа
1.9	Большой и малый моторы. Правила и принцип работы	2	2	-	Наблюдение, беседа
1.10	Программа LEGO MINDSTORM. Знакомство с запуском программы и её интерфейсом.	2	-	2	Наблюдение, беседа
1.11	Понятие команды, программы и программирования.	1	-	1	Наблюдение, беседа
1.12	Тестирование учащихся по разделу 2.	2		2	Тестирование, практическая работа
1.13	Ультразвуковой датчик. Правила работы с датчиком и использование.	3	1	2	Тест-драйв.
1.14	Датчик касания. Правила работы с датчиком и использование.	3	1	2	Тест-драйв.
1.15	Гироскопический датчик. Правила работы с датчиком и использование.	3	1	2	Тест-драйв.
1.16	Датчик цвета/света. Правила работы с датчиком и использование.	3	1	2	Тест-драйв.
1.17	ИК-маяк. Правила работы с датчиком и использование.	3	1	2	Тест-драйв.
1.18	Комбинации датчиков.	1	-	1	Наблюдение, беседа
1.19	Контрольное занятие по датчикам. Тестирование.	2	-	2	Тестирование
1.20	Сохранение и загрузка программ.	2	1	1	Наблюдение, беседа
1.21	Создание простых программ.	2	1	1	Практическая работа
1.22	Создание многоступенчатых программ.	2	1	1	Наблюдение, беседа
1.23	Дистанционное управление роботом по предварительно написанной программе.	2	1	1	Наблюдение, беседа
1.24	Соревнование «Траектория» между группами. Разбор ошибок и тактик.	4	1	3	Соревнование

Модуль2 «Изучение схем и технологических карт. Программирование.»

В данном модуле обучающимся предлагается ознакомиться с готовыми технологическими картами сбора роботов и программированием на основе шаблона.

Обучающиеся закрепляют полученные знания по управлению моторами робота, датчиками, способами загрузки и сохранения программ, приобретают навыки по использованию палитры инструментов программного обеспечения.

Обучающиеся совершенствуют полученные знания по взаимосвязи микропроцессор + конструктор + программа = робот, знакомятся с приемами оптимизации при составлении программ, закрепляют навыки по использованию программной среды.

Проводится установление связи, датчики - органы чувств робота. Обучающиеся знакомятся с новым приемом планирования, повторяют ранее изученный материал, шлифуют мастерство в составлении программ с функцией регистрации данных.

В конце работы этого модуля обучающиеся создают схему сбора собственного робота, а так же шаблон для программирования к нему.

Цель модуля: освоить принцип работы с технологическими картами сбора и программирования робота. Создать авторскую схему.

Задачи модуля:

- познакомится с понятиями: сенсор, датчик, органы чувств, оптимизации закрепление понятия проектирование сбора данных
- научиться планировать деятельность робота, согласно полученной задачи по сбору данных об освещенности и движения робота, согласно полученной задачи по сбору данных об освещенности в течение заданного промежутка времени.
 - Создать технологическую карту на основе собранного робота.

Тематическое планирование модуля «Изучение схем и технологических карт. Программирование»

№	Наименование тем	Кол-	Теория	Практика	Формы
· \-		BO	Гсории	приктики	аттестации/
		часов			контроля
2	Модуль «Изучение схем и	36	9	27	Koniposis
4	технологических карт.	30		27	
	Программирование.»				
2.1	Понятие технологическая карта и её применение.	1	1	-	Наблюдение, беседа
2.3	Разбор первой технологической карты «Робот – танк».	2	-	2	Наблюдение, беседа
2.4	Программирование «Робот — танк».	2	1	1	Тест-драйв.
2.5	Разбор второй технологической карты «Робот – погрузчик».	2	-	2	Наблюдение, беседа
2.6	Программирование «Робот – погрузчик».	2	1	1	Тест-драйв.
2.7	Разбор третьей технологической карты «Робот – зубастик».	2	-	2	Наблюдение, беседа
2.8	Программирование «Робот – зубастик».	2	1	1	Тест-драйв.
2.9	Разбор четвёртой технологической карты «Робот – слон».	2	-	2	Наблюдение, беседа
2.10	Программирование «Робот – слон»	2	1	1	Тест-драйв.
2.11	РобоБой. Бои роботов между группами.	2	-	2	Соревнования.

2.12	Разработка собственного робота. Цели и задачи разработки. Идеи и предложения.	2	2	-	Наблюдение, беседа.
2.13	Сборка робота. Разбор и устранение технических ошибок.	2	-	2	Наблюдение, беседа, тест- драйв.
2.14	Программирование целостного робота в соответствии с целями и задачами.	2	-	2	Наблюдение, беседа.
2.15	Создание технологической карты по шагам.	5	1	4	Наблюдение, беседа.
2.16	Создание разных вариаций программирования робота	3	1	2	Тест-драйв.
2.17	Заключительное занятие по модулю. Творческая работа «Моя область — Самарская». Сборка модели робота по поставленной проблеме/задаче.	3	-	3	Голосование.

Модуль 3. «Проектная деятельность.»

Одной из особенностей проектов можно считать наличие социально значимых результатов. Результаты проектов могут быть как минимум двух видов:

Продуктовыми — создание каких-то материальных или нематериальных продуктов, таких как: приобретение новых знаний, которые ученик обобщил в наглядной форме; создание арт-объекта, произведения искусства, оборудования, изобретения, технологии. Образовательными — это уже упомянутые гибкие и жёсткие навыки (soft skills и hard skills), развитие ценностей, формирующихся за период работы над проектом.

Так и обучающимся предстоит изучить структуру проекта, ведь в первую очередь создание проекта позволяет ученику получить не только готовые знания из различных источников, но и возможность самостоятельно отыскать истину в волнующем его вопросе, углубить познания, отточить навыки либо научиться новым.

Цель модуля: знакомство с понятиям проект, решение реально существующей, актуальной проблемы, связанной с родным краем — Самарской областью.

Задачи модуля:

- научиться правильно писать проект, изучить структуру проекта, правильно ставить цели и задачи, устанавливать проблему и искать рациональное решение к проблеме
- познакомиться с технологией создания робота по поставленной задаче, либо проблеме.
- научиться создавать модели, соответствующие критериям проекта.

Тематическое планирование модуля «Проектная деятельность.»

Nº	Наименование тем	Кол- во часов	Теория	Практ ика	Формы аттестации/ контрол я
3	Модуль «Проектная деятельность.»	24	3	21	
3.1	Понятие проекта.	1	-	1	Опрос
3.2	Структура и виды проектов.	2	2	-	Наблюдение, беседа
3.3	«Мозговой штурм» тренинг на выявление общей идеи/темы для проекта.	1	-	1	Опрос
3.4	Разбор выбранной идеи/темы. Постановка проблемы, целей и задач проекта.	2	-	2	Наблюдение, беседа
3.5	Решения проблемы путём создания нового технического средства – робота.	1	-	1	Опрос
3.6	Создание модели робота(Внешний вид, характеристики, возможности).	2		2	Наблюдение, беседа
3.7	Сборка робота по заданной теме.	5	-	5	Наблюдение, беседа

3.8	Программирование созданной модели.	3		3	Практическая работа
3.9	Написание и защита проекта.	5	1	4	Наблюдение, беседа
3.10	Заключительное занятие. Итоги года.	2	-	2	Наблюдение, беседа

МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

№	Модуль	Методические виды продукции (разработки игр, походов, экскурсий, конкурсов, бесед, конференций и т.д.)	Рекомендации по проведению лабораторных и практических работ, по постановке опытов или экспериментов и т.д.	Дидактический и лекционный материалы, тематика (или методики) опытнической или исследовательской работы и т.д.
1	Основы. Введение в мир роботов. Изучение продукта LEGO EV3.	Электронные уроки в программном обеспечении Lego Mindstorm	Инструктаж по ОТ Правила для обучающихся Инструкции для построения роботов и программирования.	Программная среда Lego Mindstorm, наборы конструкторов Lego Mindstorm, компьютер.
2	Изучение схем и технологических карт. Программировани е	Электронные уроки в программном обеспечении Lego Mindstorm	Инструкции для построения роботов и программирования.	Программная среда Lego Mindstorm, наборы конструкторов, компьютер.
3	Проектная Деятельность. Моя область – Самарская.	Электронные уроки в программном обеспечении Lego Mindstorm	Инструкции для построения роботов и программирования.	Программная среда Lego Mindstorm, наборы конструкторов Lego Mindstorm, компьютер.

СПИСОК ЛИТЕРАТУРЫ

Литература используемая педагогом дополнительного образования.

- 1. Бабич, А. В. Промышленная робототехника / А.В. Бабич. М.: Книга по Требованию, 2016. 263 с.
- 2. Барсуков, А. Кто есть кто в робототехнике: Ежеквартальный справочник / А. Барсуков. М.: Книга по Требованию, 2015. 126 с.
- 3. Барсуков, А.П. Кто есть кто в робототехнике / А.П. Барсуков. М.: Книга по Требованию, 2016. 128 с.
- 4. Воскобойников, Б. С. Словарь по гибким производственным системам и робототехнике. Английский. Немецкий. Французский. Нидерландский / Б.С. Воскобойников, Б.И. Зайчик, С.М. Палей. М.: Русский язык, 2015. 392 с.
 - Иванов, А. А. Основы робототехники / А.А. Иванов. М.: Форум, 2014. 224 с.
- 6. Копосов, Д. Г. Первый шаг в робототехнику. 5-6 классы. Практикум / Д.Г. Копосов. М.: Бином. Лаборатория знаний, 2014. 292 с.
- 7. Копосов, Д. Г. Первый шаг в робототехнику. 5-6 классы. Рабочая тетрадь / Д.Г. Копосов. М.: Бином. Лаборатория знаний, 2014. **229** с.
- 8. Копосов, Д. Г. Первый шаг в робототехнику. Практикум для 5-6 классов / Д.Г. Копосов. М.: Бином. Лаборатория знаний, 2015. 292 с.
- 9. Копосов, Д. Г. Первый шаг в робототехнику. Рабочая тетрадь для 5-6 классов / Д.Г. Копосов. М.: Бином. Лаборатория знаний, 2015. 889 с.
- 10. Костров, Б. В. Искусственный интеллект и робототехника / Б.В. Костров, В.Н. Ручкин, В.А. Фулин. М.: Диалог-Мифи, 2014. 224 с.
- 11. Макаров, И. М. Робототехника. История и перспективы / И.М. Макаров, Ю.И. Топчеев. М.: Наука, МАИ, 2015. 352 с.
- 12. Петров, А. А. Англо-русский словарь по робототехнике / А.А. Петров, Е.К. Масловский. М.: Русский язык, 2015. 494 с.
- 13. Попов, Е.П. Робототехника и гибкие производственные системы / Е.П. Попов. М.: ИЛ, 2015. 192 с.
- 14. Предко, М. 123 эксперимента по робототехнике / М. Предко. М.: СПб.: Питер, 2014. 544 с.
- 15. Предко, М. 123 эксперимента по робототехнике / М. Предко. М.: НТ Пресс, 2016. 544 с.
- 16. Робототехника и гибкие автоматизированные производства / ред. И.М. Макаров. М.: Машиностроение, 2016. 478 с.
 - 17. Робототехника, прогноз, программирование. М.: ЛКИ, 2017. 208 с.
- 18. Филиппов, С. А. Робототехника для детей и родителей / С.А. Филиппов. Л.: Наука, 2017. 320 с.
- 19. Юревич, Е. И. Основы робототехники (+ CD-ROM) / Е.И. Юревич. М.: БХВ-Петербург, 2012. 360 с.
- 20. Юревич, Е. И. Основы робототехники / Е.И. Юревич. Л.: Машиностроение, 2015. 272 с.

Литература, рекомендованная для чтения учащимся.

- 1. Гармаш И.И. Занимательная автоматика. Киев: Рад. Школа, 2014.
- 2. ПервоРобот NXT. Введение в робототехнику. 2016 The LEGO Group
- 3. MindStorms education. 2016 The LEGO Group.
- 4. Копосов Д.Г. Первый шаг в робототехнику: практикум для 5-6 классов. М., БИНОМ. Лаборатория знаний, 2012

- 5. Индустрия развлечений: ПервоРобот. Книга для учителя и сборник проектов.
- 6. ПервоРобот NXT. Введение в робототехнику. 2016 The LEGO Group
- 7. MindStorms education EV3, 2015 The LEGO Group.
- 8. Наука. Энциклопедия. М., «РОСМЭН», 2014. 125 с.
- 9. Энциклопедический словарь юного техника. М., «Педагогика», 2015.

Интернет-ресурсы

- 1. www.school.edu.ru/int
- 2. http://www.int-edu.ru
- 3. http://www.prorobot.ru
- 4. <u>legoeducation.com</u>

Календарно – тематический план

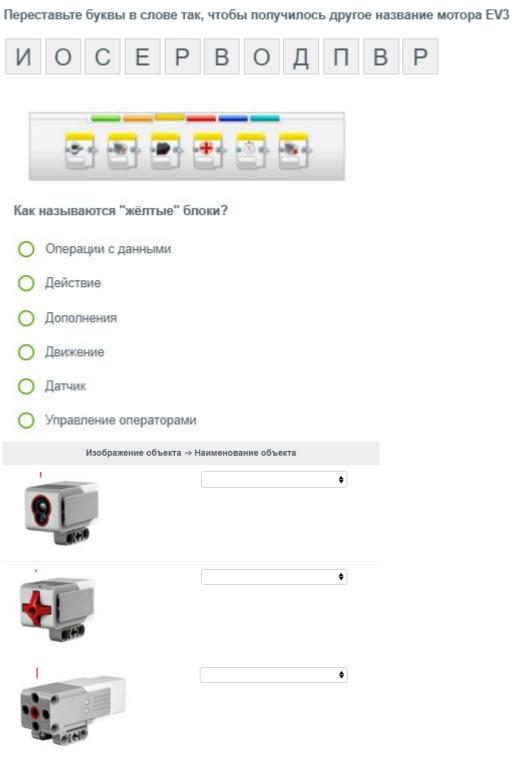
«Академия Робототехнических искусств»

NC-	«Академия I 000101е.	1		·	ъ
№	Наименование тем	Кол-	Теория	Практика	Формы
		ВО			аттестации/
		часов			контроля
1	Модуль «Основы. Введение в мир	48	19	29	
	роботов. Изучение продукта LEGO EV3»				
1.1	Вводное занятие. Техника безопасности. Роботы вокруг нас.	1	1	-	Наблюдение, беседа
1.2	Среда конструирования - знакомство с деталями конструктора. Названия и назначение базовых деталей.	2	1	1	Наблюдение, беседа
1.3	Изучение соединительных деталей конструктора.	1	1	-	Наблюдение, беседа
1.4	Конструкция. Основные свойства конструкции при ее построении.	2	1	1	Наблюдение, беседа
1.5	Условные обозначения деталей конструктора. Выбор наиболее рационального способа описания.	1	1	-	Наблюдение, беседа
1.6	Тестирование учащихся по разделу 1.	2	-	2	Тестирование, практическая работа
1.7	Техника безопасности при работе с моторами и микропроцессором.	1	1	-	Наблюдение, беседа
1.8	Микропроцессор и правила работы с ним.	1	-	1	Наблюдение, беседа
1.9	Большой и малый моторы. Правила и принцип работы	2	2	-	Наблюдение, беседа
1.10	Программа LEGO MINDSTORM. Знакомство с запуском программы и её интерфейсом.	2	-	2	Наблюдение, беседа
1.11	Понятие команды, программы и программирования.	1	_	1	Наблюдение, беседа
1.12	Тестирование учащихся по разделу 2.	2		2	Тестирование, практическая работа
1.13	Ультразвуковой датчик. Правила работы с датчиком и использование.	3	1	2	Тест-драйв.
1.14	Датчик касания. Правила работы с датчиком и использование.	3	1	2	Тест-драйв.
1.15	Гироскопический датчик. Правила работы с датчиком и использование.	3	1	2	Тест-драйв.
1.16	Датчик цвета/света. Правила работы с датчиком и использование.	3	1	2	Тест-драйв.
1.17	ИК-маяк. Правила работы с датчиком и использование.	3	1	2	Тест-драйв.
1.18	Комбинации датчиков.	1	-	1	Наблюдение, беседа

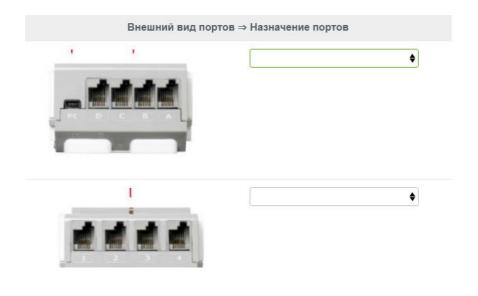
1.19	Контрольное занятие по датчикам. Тестирование.	2	-	2	Тестирование
1.20	Сохранение и загрузка программ.	2	1	1	Наблюдение, беседа
1.21	Создание простых программ.	2	1	1	Практическая работа
1.22	Создание многоступенчатых программ.	2	1	1	Наблюдение, беседа
1.23	Дистанционное управление роботом по предварительно написанной программе.	2	1	1	Наблюдение, беседа
1.24	Соревнование «Траектория» между группами. Разбор ошибок и тактик.	4	1	3	Соревнование
2	Модуль «Изучение схем и	36	9	27	
	технологических карт.				
	Программирование.»				
2.1	Понятие технологическая карта и её применение.	1	1	-	Наблюдение, беседа
2.3	Разбор первой технологической карты «Робот – танк».	2	-	2	Наблюдение, беседа
2.4	Программирование «Робот – танк».	2	1	1	Тест-драйв.
2.5	Разбор второй технологической карты «Робот – погрузчик».	2	-	2	Наблюдение, беседа
2.6	Программирование «Робот – погрузчик».	2	1	1	Тест-драйв.
2.7	Разбор третьей технологической карты «Робот – зубастик».	2	-	2	Наблюдение, беседа
2.8	Программирование «Робот – зубастик».	2	1	1	Тест-драйв.
2.9	Разбор четвёртой технологической карты «Робот – слон».	2	-	2	Наблюдение, беседа
2.10	Программирование «Робот – слон»	2	1	1	Тест-драйв.
2.11	РобоБой. Бои роботов между группами.	2	-	2	Соревнования.
2.12	Разработка собственного робота. Цели и задачи разработки. Идеи и предложения.	2	2	-	Наблюдение, беседа
2.13	Сборка робота. Разбор и устранение технических ошибок.	4	-	4	Наблюдение, беседа, тест- драйв.
2.14	Программирование целостного робота в соответствии с целями и задачами.	2	-	2	Наблюдение, беседа
2.15	Создание технологической карты по шагам.	5	1	4	Наблюдение, беседа
2.16	Создание разных вариаций программирования робота	3	1	2	Тест-драйв.
2.17	Заключительное занятие по модулю.	1	-	1	Наблюдение, беседа
3	Модуль «Проектная деятельность.»	24	3	21	
3.1	Понятие проекта.	1	-	1	Опрос
I					

3.2	Структура и виды проектов.	2	2	-	Наблюдение, беседа
3.3	«Мозговой штурм» тренинг на выявление общей идеи/темы для проекта.	1	-	1	Опрос
3.4	Разбор выбранной идеи/темы. Постановка проблемы, целей и задач проекта.	2	-	2	Наблюдение, беседа
3.5	Решения проблемы путём создания нового технического средства – робота.	1	-	1	Опрос
3.6	Создание модели робота(Внешний вид, характеристики, возможности).	2		2	Наблюдение, беседа
3.7	Сборка робота по заданной теме.	5	-	5	Наблюдение, беседа
3.8	Программирование созданной модели.	3		3	Практическая работа
3.9	Написание и защита проекта.	5	1	4	Наблюдение, беседа
3.10	Заключительное занятие. Итоги года.	2	-	2	Наблюдение, беседа
	Итого	108	31	77	

Тесты, вопросы по программе «Академия Робототехнических Искусств(АРИ)»


Что изображено на рисунке?

Большой мотор
 Модуль EV3
 Инфракрасный датчик
 Сервопривод
 Бортовой самописец
 Процессор EV3
 Инфракрасный маяк


В чем можно измерять расстояние с помощью инфракрасного датчика?

Сантиметры
Миллиметры
Дюймы
Футы
Аршины

(ак называются "зелёные" блоки?

- О Управление операторами
- **О** Движение
- О Действие
- О Датчик
- О Дополнения
- Операции с данными